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have the following linear properties: 

A (a'+ a*) = A te') + A (e*),IA (a) = A (hu)~h& o 
E (8' + 8*) = R (8') + R (B"), u (6) = B (as), a >, 0 

(4.8) 

From formulae (4.7) and (4.8) it follows that conditions (3.4) and (4.4) will be satisfied, 
if there are numbers O<L<i,a~>O,&&O such that 

(1 - h) <WITE has, aid<c~~~, i = 1, . . ., k 
h <B&b = (1 -V Bj, &a (Bj>t*, i = 1, . . ., m 

These conditions will be satisfied, if for all i= 1,...,k and j= 1, . . ..m we have 

From here we obtain the condition which when satisfied results in the satisfaction of 
(4.3) and (4.4) 

mlW(tai>,+l<ai>r") < minj (<Bj>tY<&>t”) (4.9) 

We shall now give some examples of multivalued functions that satisfy (4.8). If A,,. ..Bh. 
are convex compacts in Rn, then A(a)==%Al+...+akA~ satisfies the condition (4.8). 

Let Ai,i = l,...,n+i be defined by the scalar product of inequalities (zi,Z)<l in R". 
Here q, . . .,z,,,+~+, are vectors from Rn and the first of them are linearly independent, and the 
coefficients fi in expansion z~+~= flzl+...+fn~n are negative. 

Consider the set 

A (a,, . . .,a,,, )=n(~iAi)-(t~tl":(~i,Z)~~i,i=I,...,a+l) (&IO) 

in which a* are non-negative. Then, as shown in /lo/, the set (4.10) satisfiescondition (4.8). 
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SINGULAR PERTURBATIONS IN A CLASS OF PROBLEMS OF OPTIMAL 
CONTROL WITH INTEGRAL CONVEX CRITERION* 

T.R. GICHEV 

The problem of optimal control is investigated with a linear law of motion 
and convex quality criterion. A small positive parameter appears in front 
of the derivatives of some of the unknowns in the law of motion. The 

behaviour of the optimal solution is studied when the small parameter 
approaches zero with some assumptions that are different from thos 
encountered in the Literature. 

1, Controlled objects whoee law of motion is 

*Prikl.Matem.Mekhan.,48,6,898-903,1984 



x’ = An (4 x + A, (t) y -I- B, (4 u 

AY’ = A,, (t) x + A,, (4 Y + B, (t) u; h E (0, A,), Ao > 0 
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(1.1) 

are usually called singularly perturbed /1,2/. It is assumed that the length of time ita, f 
is fixed, the phase vectors x and y belong to spaces R” and R”, respectively, the controlling 
parameter u belongs to space R’, Ail(t), and B,(t), (i, j = i, 2) are matrices of corresponding 
dimensions that are continuous in the time interval Ito, TI. 

The bahaviour of the solutions of various problems of the optimal Control of an object 
with the law of motion (l.l), as X -+O has been the subject of many publications (e.g. /3/, 

and surveys /1,2/). The basic assumption in these investigation is the stipulation that the 
real parts of the characteristic numbers of the matrix A,, mustbenegative. Thecasewhenthese 
characteristic numbers have both positive and negative real parts was considered in /4/. 
Below we allow the real part of the characteristic numbers of the matrix Am to vanish at one 
point Cl0 in the interval (to, T). The results can easily be transferred to the case when 
these real parts vanish at a finite number of points intheinterval (tr, T) The case is con- 
sidered,nhenthe realpartsarenoa-positive, but similar results also hold, when the character- 
isticnumbersofthematrix A,, may have non-positive and non-negative real parts. As an example 
of the problem of optimal control, the problem with a fixed right end is considered. 

2, First, let us investigate some properties of the fundamental matrix Y(t, z, h), r.<t, 
normalized for t = z of the equation 

AY' = A,, (t) Y (2.1) 

Let Rey [A,,] be the real part of any characteristic number y [A,1 of the matrix Ass. 
Let us specify the assumptions that are assumed to be satisfied when studying the properties 
of the fundamental matrix Y(t, ‘E, h). 

Points 00, 9,, f+, to <0,<0, <0, < T and a continuous function e(t), t, <t < T exist 
which*k linear in each segment it,,, 8,1, [el, Cl;], [0,, e,], [O,, Ti and u (t)> 0 when t#=&, such that 

Re y IAl2 (tfl Q -2u (t) 
also for some constant n> 0 

II exp (& (t) z) II < y1 sxp f--2s (4 d, Vt E fe,, 6J, r 9 0 

A2. If IQ, z,] is one of the segments ie,, 6J, Ieo, e,], and on that segment u (t) = at + b, then 

II 4, (h) --A,, (tJ II Q ~0 I tl - t, 1, Vh, h E hr 4; 
Yo E (0, 3 Ia lhl) 

Lensnal. Let Ih, 4 be any of the segments K+,, 0J, le,, e,i, and the assumptions ~1 and 
A2 are satisfied. Then a constant cp> 0 exists such that for all r and t, rr<;s<,<tQr,, 
the inequality 

II Y 0, v 1) II < co exp (- (0 0) -I- u (z))(t - M2?4 (2.2) 
holds. 

Proof. Let the function O(I) = at+ b hold on the segment k1, %I* 
follows from (2.1) that 

When 6 f [zlV J, it 

hdY (t, 2, h)idf = A, (0) Y (t, 5, h) + IA, (t) - A,* @)I Y (t, T, 3.) 

hence 

Y(f,+,h)=exp A~(0)lAr, 
( 

-\+ 
1 1 
7;" 5 exp(~s(e)+) x I&(S)-& (Wly(~, t, Mds (2.3) 

r 

First, we consider the case when the function o(t) decreases on the segment [T,,T,) ati 
0 < 0. We assume that t is a fixed point of the segment [r,,r*] and that the notation 

U'l ((9 7, 1) = II Y (h z, h) /I 2, (t, I, h) 

is introduced. 
If, when B = r wemultiPlYbo~ sidesof (2*3) by Z,(r,r,h), when z, ~76 t<~,we obtain 

IL'1 (G 't. A) G JiP f A 0 - YaPJ (3 I n I))_' 

from which inequality (2.2) follows, when c0 = ~~(1 - ~&(31 alp. 
When the function o(t) = or+ 6 increases on the segment IT~,TJ and o>O, we introduce 
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and consider the equation 

MY (t, 7, I)/& = - Y (t, T, h) A, (T) 

from which we obtain, as above, the inequality (2.2) for the same value of co. 

Lemla 2. Let the assumption Al and A2 be satisfied. Then a constant cl> 0 exists such 
that for all fairly small h > 0, if [T1, r*l is any of segments [t,, 0,l, lo,, goI, [Cl,, @.I, [9,, T1, 
then 

v,rp Q Cl, VT,' < C,, vr, t E [Tl, z,l 

where vzq, V,,l is the total change of Y (t, T, k) with respect to t in the segment [r, T?], and 
with respect to z in the segment [rlr tl, respectively. 

Proof. From assumption Al in the segments [to, 8,] and IBr,T1 it follows that /5/ 

II y (t, ‘c, A) 1 d co exp (-- 0 (4 0 - q/h) 

where co is saae constant. The proof of the lemma for these segments is found, e.g. in /6/. 
Next we consider the segment (0,,6,1. The uniform boundedness of V$ with respect to 

*es I%* %I, and V%' with respect to tEi[91,f3,1 is obtained from the boundedness of the 
total change of the two terms on the right side of (2.3) when f3= B1. This follows for the 
first terms from the results in /6/, and for the second, from Lemma 1. 

In the segment [f&,6,] (2.3) is considered for 6 = 8,. This is followed by reasoning 
similar to that in the first case. This completes the proof of the lemma. 

3. Let us study some of the properties of the solution (XL, yh) of the problem 

x'=All(t)x+A11(t)~+f(t,h), x(to)=-OP.) (3.1) 

hy' = &I (t) x + &a (4 Y + g V, A), Y (to) = wo (A) 

in the segment [to, Tl when hi (0, A,), assuming that matrix A~r-~(t) exists everywhere in 
the segment [to, Tl. We denote by x, the solution of the problem 

x' = A0 (t) x + f (t, 0) - Au (4 A;: (4 8 (L 0); (3.2) 

AO= Al,-A~sA:Azl 

x (to) = vo (0) -A, (to) A,;' (to) '"0 

Let X(t,z) be the fundamental matrix of the equation x' = A,,(t)x normalized for t=z, 

and y. 0) = --A,,-' (t)(& 0) x0 (4 + d 0, 0)). 

Theorem 1. Let the assumptions Al and A2 be satisfied. Further, let us assume that when 
I E 10, A,,) the functions f (e, ?.) E Lp@) [to, 2’1, g (-, h) E L,(m) [to, Tl, p>f; the set of functions 
f(.,h),b~ (0, A,) are bounded in Lp(n)[tO, Tl, the set of points vg (h) and A.w, (A), h E (0, Ao) 
are bounded in R" and Rm, respectively. The following statements then hold. 

lo I If the set of functions g(., X), h~(0, ho) is bounded in J$,('~)[&J. Tl, a constant 

CI > 0 exists such that for all fairly small h> 0 

If the set of functions g(., X),h ~(0, A,) is uniformly bounded, then for any point to c 

(to, T) a constant c3 > 0 exists that for all fairly small h>O 

(3.3) 

If the set of points wo(J.), hi (0, A,) is bounded, inequality (3-3) also holds for To = t,. 

s$:. ;r'(.<?$$ 
is a sequence of numbers hk>O for which limb, = 0 as kern, the 
is weakly convergent in L,("b[t,, Tj to I (q, O), and the sequence (?4 ( 

k 10D weakly converges in L,,('")[to, Tl to g (., 0), lim vo(h) = v. (0) and lim hli w. (Ah.) = w. as 

k+m, then for any point z, E(1,, T) 

lim 
&.a m;zr II XLk (4 -x0 (4 II = 01 

and, if 11 w. 11 = 0 the last equation also holds for t,, = to. 

30" With the assumptions from 2O, when the functions g(.. X,)(k = i, 2, . ..) are continuous 
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and the sequences {g ('9 hk)jl" converge uniformly in the segment It,, Tl to g(. , 0), then almost 

everywhere in the segment [t,,Tl the sequence {y~~(t)}lOD converges to Y@(t). 
The proof of all three statements of the theorem in the segment Ito, 0,) follows from 

Theorems 2.1 and 2.2 in /4/. 
Let us now consider the segment &, 8,). We introduce the functions 

* 
X(t,z)dla(~)yo(r)dt] ++ 

.I 

Since ~~~~~y~(e~)~=O as A-+0, the uniform boundedness of the set of functions v,(*, h) 
for all fairly small h>O on assumptions lo is proved directly. For the last three terms 
we use the properties of the Stieltjes integral and Lemma 2. 

According to (3.1) and (3.2) 

Y 6, s, a) 41 (s)(xh (4 - x0 (4) &fr 1 

Then, changing the order of integration and applying the Gronwall inequality, we obtain 

Consequently, by virtue of the assumptions in lo the set of functions xk is uniformly 
bounded for all fairly small h>O. On the same assumptions we have 

~~VlY~(6o)n~ 

When the set of functions I! 1.1 %I, h cr (0, A,) is uniformly bounded, from the equation 

(3.5) 

there follows the uniform boundedness of the set of functions Yk for all fairly small h> 0. 
In assumptions 2O the sequence (VI (‘, ?kk)}ra converges uniformly in the segment fe,, 801 to 

zero, and then from (3.4) there follows the uniform convergence of the sequence {x~,)I~ to h. 
The convergence of the sequence 
from (3.5) using Lemmas 1, 

{y&S for all 1~ (e,, I&i on assumptions 3O is obtained 
2 and the properties of the Stieltjes integral. 

Let us consider in the segment I@,, $1 the functions v, (t, h) obtained from v, (t, h) by 
exchanging 611 for go, Similarly, we shall prove that under appropriate conditions on 
assumption lo for all fairly small h>O the set of functions xh is uniformly bounded 
lim A [I yr (0,) I/ = 0 as A-0 and the set of functions y), is uniformly bounded. The uniform 
convergence inthe segment KI,, @,I of the sequence (r~k)kw to x0 and the convergence of the 
squence- IA, @)b" to ye(t) for all. tG fe,,e,i is similarly proved. The proof of the 
theorem is completed by applying in the segment fe,, Tl. Theorems 2.1 and 2.2 from 14,'. 
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4. Let us investigate some of the properties of the controlled object whose law of 
motion is (1.1). The proof of all statements cited below is similar to that of therespective 
statements in /4/, and is carried out using the scheme employed there but taking Theorem 1 
into account. 

Let P(t, x) be a scalar function continuous in the set It,,, Ti x R", convex in x for 
any fixed value t E Ito, Tl, f" 0, x) > 0, and have continuous partial derivatives ap (t, x)/k 
Let h(t, u) be a scalar function continuous in the set [t,, Tl x R’ strictly convex in u for 
fixed t E [to, TI, and for some constants so> 0, p> 1 the inequality h (t, u) > a, I( u 1” is 
satisfied. The admissable control for hE [O, Ao) comprises all r-measurable functions u E 
L,cr) It,, Tl for which the functional 

Z(u,h)=5(P(t’“(t))+h(t,u(t)))dt 
1. 

(4.1) 

where (x, Y) is the solution of system (1.1) corresponding to the control u, takes a finite 
value, 

The following are the assumptions for which investigations are carried out below. 
Bl. The equation 

holds 

rank [B, (T) A,, (T) B2 (T) . . . Ai:” (T) B, (T)] = m 

m. An object whose'law of motion is 

x' = A, 0) x + (B, (t) -A,, (t) -4,;' 0) B, (0) u (4.2) 

is entirely controllable in the segment [t,, Tl. 
First, we formulate a lemma which will be repeatedly used in proving the followingtheorems. 

Lemma 3. . Let the assumptions Al, A2 and B1 be satisfied. Further, let {&)I~ be a 
sequence of numbers hk > 0, lirnat = 0 when /C-P w; W,,E R", w~ER"; let u* (t), t,<ttT 
be a continuous control with the corresponding solution x* of (4.2). Then, a sequence 
ktl);wwhzf r;rrab;z fu?uttions uk * exists with the respective Solution (Xk*, Yk*) Of system 

. 
lo. the seq$nces {u*~}I", {xk*}rm,(y~*}~OD are uniformly bound in the segment [to, Tl, and 

at each point tE (to, T), t# Be converge to u*, x*, y* = - A,*-' (A,,X* + B#‘), respectively 
20. the equations 

Xk* (t,,) = X* (to), jl Xk* (T) =x* (T), yr* (to) = WO, yk* (T) = WT 

iim z(uk*9&)=z(U*~o) 
k-m 

hold. 
If also assumptions B2 holds, the sequence {uk*)lx) may be selected so that the equation 

Xk* (T) = x* (T) is satisfied. 

Theorem 2. Let the assumptions Al,A2,B1 and B2 be satisfied. Then, for all fairly 
small h>O the object whose law of motion is (1.1) is entirely controllable in the segment 

It,,, TI. 
Suppose PI, h~(0, A,) denotes the problem of optimal control of an object whose law of 

motion is (l.l), which consists of finding an admissable control u which transfers the object 
from the initial state x (to) = v,,y (to) = WO to the final state s (T) = VT, y (T) = WY for the 
minimal value of the criterion (4.1). We denote the optimal control corresponding to the 

solution of system (1,l) and the optimal value of the criterion (4,l) for problem PP. by UA, 

(%A, Y& I?., respectively. We denote by P, the problem of optimal control which consists of 
finding an admissible control u with corresponding solution x of (4-2) such that X (to) = V”, 
x (T) = VT and the criterion (4.1) takes the minimum value, Let uO, X0, I,, be the solution 

of this problem and y0 = -A,,-’ (AzlxO -I- B,u,). 

Theorm 3. Let assumptions Al,A2,Bl, and B2 be satisfied. Then for any number a>0 
and any four points rO', z,O, T,', rso for which 

t, < r,"< @I< rl"< 6, < rz" < 02 < r,"< T 

anumber 6>0 exists such that, when h 5 (0,6), then 
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Note that using the statements of Sects. 2 and 3 enables us to extend the results of 

Theorems 2 and 3 to the case when the characteristic numbers of the matrix A,, in (1.1) 
have real parts that change signs at one point of the inter%d (to, T). 
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ON THE DEFINITION OF VARIATIONS IN THE MECHANICS OF CONTINUOUS MEDIA* 

A.G. TSYPKIN 

The basic forms of variations used in the mechanics of continuous media 
are presented, and relations between various types of variations of vectors 
and tensors are established. 

The construction of new more complex models of continuous media can be based on the use 
of the variational equation /l/. In constructing models of continuous dislocationsofplastic 
and solid media interacting with an electromagnetic field (in Newtonian mechanics as well as 
in the theory of relativity)/Z-6/ and, also, a number of other models, it is necessary to 
deal with variations of various types of different quantities, such as scalars, vectors, and 
tensors which can be considered as functions of Euler or Lagrangian coordinates, Hence it is 
necessary to have established connections between various types of variations which are of 
the same nature as the variable functions, 

Below we consider some of the simplest types of variations used to construct models of 
solid media in the special theory of relativity. 
coordinates and by E"(a= 

We shall denote by r((i= i,2,3,4) the Euler 
1,2, 3, 4) the Lagrangian coordinates of four-dimensional Minkowski 

space, assuming that the global, coordinates 
is the velocity of light in a vacuum). 

d and g* have a temporal nature za= ct, f;'=cr, (C 

In the coordinate system xi with basis vectors 8~ 
the lines Ii = coast, 

defined as unit vectors tangent to 
and the particle world lines determined by the equations 

law of motion of a point with Lagrangian coordinates relative to system 
zi = zi (Ea) (the 

s*). Here and 
henceforth Greek indices run through the numbers 
through 1,2,3,4. 

1,2,3, and the lower case Latin letters 

At each point of the Minkowski four-dimensional space-time we may introduce covariant 
and contravariant basis vectors fsi, and 3i, aei\ and aA= for coordinates 
P, respectively, connected by the equations 

t* and for systems 

When constructing models 
various scalar, vector, 

of media and fields besides the law of motion one has to consider 
and tensor fields that represent mechanical, physical, or chemical 

characteristic of the phenomena and processes investigated which are functions of thecoordinates 
zi or EQ (for details of these characteristics see, e,g., /6/), In problems related to 
specifying.or determining the laws of motion of the solid medium , and the laws of variation 

*Prikl.Matem.Mekhan.,48,6,904-911,1984 


